Генетика и молекулярная биология

Генетический форум
Текущее время: Пт сен 22, 2017 10:25 am

Часовой пояс: UTC + 4 часа




Начать новую тему Ответить на тему  [ Сообщений: 8 ] 
Автор Сообщение
 Заголовок сообщения: Как происходят мутации
СообщениеДобавлено: Вс май 02, 2010 10:49 am 
Не в сети
Новичок
Новичок

Зарегистрирован: Сб май 01, 2010 6:21 pm
Сообщения: 16
Различают два основных класса подвижных элементов: транспозоны и ретротранспозоны. Такая классификация основана на молекулярных механизмах, с помощью которых перемещаются подвижные элементы. Транспозоны перемещаются с участием комплекса белков, обеспечивающего активность фермента транспозазы, которая узнает элемент и обеспечивает его перенос на новое место. Транспозоны ограничены с двух сторон так называемыми инвертированными повторами, то есть последовательностями, направленными навстречу друг другу. Инвертированные повторы необходимы для перемещения элемента, которое осуществляется благодаря их сближению друг с другом и узнаванию транспозазами. Инвертированные повторы сближаются и точно отрезаются от соседних участков ДНК хозяина. Вопросы, касающиеся проблемы узнавания ДНК белками, основанной на специфичном нековалентном взаимодействии аминокислотных остатков с нуклеотидами, были рассмотрены ранее . Успешному вырезанию элемента способствует дополнительная сверхспирализация двухнитевой спирали ДНК, обеспечивающая изгибы двойной спирали и сближение отдельных ее участков. Роль сверхспирализации в функционировании генетического аппарата рассмотрена в книге М.Д. Франк-Каменецкого , а также автором статьи . Вырезанный транспозон внедряется в район вносимого транспозазой разрыва в молекуле-мишени и сшивается с ДНК хозяина в новом месте . Разрыв и зашивание осуществляются транспозазой и вспомогательными белками. Транспозаза может кодироваться как самим подвижным элементом, который будет перемещаться, так и другой копией элемента, локализованной в том же геноме в отдалении.

Итак, подвижность элементов становится возможной благодаря активности ферментов, которые способны точно вырезать элемент из хромосомы для того, чтобы затем вставить его в какое-то другое место генома. Брешь в ДНК, оставляемая после вырезания транспозона, может залечиваться - застраиваться с участием гомологичного участка, например сестринской, только что редуплицированной молекулы ДНК. Осуществляются комплементарные взаимодействия нитей (красная с желтой) в гомологичных участках ДНК, соседствующих с транспозоном, затем происходит достройка - синтез комплементарных нитей (синие пунктирные стрелки), после чего образовавшаяся структура разрезается (волнистые стрелки), а "синие" участки новосинтезированной ДНК, содержащие материал ДНК транспозона, сшиваются с "желтыми" или "красными" флангами. В итоге залечивается дырка на месте вырезанного транспозона, а число копий транспозона увеличивается на одну копию. Обратим внимание на то, что клетка способна залечивать любой двухнитевой разрыв, образовавшийся, например, при облучении. Может ли клетка справиться с такой важной задачей, если эти механизмы восстановления целостности хромосомы будут нарушены? Как мы увидим, в таком случае на помощь могут прийти ретротранспозоны.

Здесь не рассматриваются транспозоны бактерий. Однако необходимо упомянуть, что они очень хорошо изучены . Бактериальный транспозон кроме гена транспозазы может содержать ген, обеспечивающий устойчивость бактерии к тому или иному антибиотику - пенициллину, тетрациклину и др. Поэтому большой практический интерес представляют исследования закономерностей распространения подобных бактериальных транспозонов. Транспозоны активно исследуют у растений, насекомых, и, наконец, недавно они были обнаружены в хромосомах человека. Эти подвижные элементы можно рассматривать как вездесущие.

Другой большой класс также вездесущих подвижных элементов - это ретротранспозоны, они не умеют вырезаться из хромосомы, как это делают транспозоны. Механизм их перемещения основан на существовании открытой в 1970 году Г. Теминым и Д. Балтимором реакции обратной транскрипции - синтеза нити ДНК на РНК. Химическая реакция протекает так же, как при образовании нити комплементарной ДНК на ДНК-матрице при репликации двухнитевой молекулы ДНК . Обратная транскрипция была обнаружена при изучении ретровирусов, содержащих РНК, которвя служит матрицей при образовании ДНК-копии РНК вируса . Фермент, осуществляющий эту реакцию синтеза ДНК на РНК (вспомним, что транскрипция - это синтез РНК на ДНК), называют обратной транскриптазой или (в русской литературе) ревертазой. Ревертаза не только ведет синтез нити ДНК на РНК, но и осуществляет синтез второй комплементарной нити ДНК, а РНК-матрица распадается и удаляется. Двухнитевая ДНК синтезируется в цитоплазме, а затем перемещается в ядро и может встроиться в геном, образуя провирус . Находясь в хромосоме, провирус стабильно наследуется в ряду поколений как обычный ген. В хромосомах млекопитающих содержатся так называемые эндогенные провирусы, которые безвредны, а может быть, даже несут какие-нибудь биологические функции. Провирус ограничен так называемыми длинными концевыми повторами (ДКП), содержащими обычно по 250-700 нуклеотидных пар. Они необходимы для транскрипции провируса и его репликации (воспроизведения). Левый повтор содержит промотор, с которым взаимодействует РНК-полимераза, начинающая синтез РНК ( о промоторах и РНК-полимеразе). Синтезированная молекула РНК, равно как и РНК из вирусной частицы, заразившей клетку, транслируется с образованием белков-ферментов, необходимых для синтеза ДНК провируса и его внедрения в геном, а также белков самой вирусной частицы. В некоторых случаях может образоваться зрелый вирус, содержащий РНК, упакованную в белковую оболочку. Вирусная частица может выйти из одной клетки и заразить другие. Для встраивания (интеграции) ДНК провируса необходим фермент интеграза, разрезающий ДНК-мишень и сходный по механизму своего действия с транспозазой. Наличие ДКП не только обеспечивает транскрипцию, но и полноценную репликацию провируса с двумя ДКП (этот сложный механизм здесь не рассматривается). Может случиться, что в процессе обратной транскрипции и репликации ДНК в состав будущего провируса случайно попадет материал других клеточных генов, если, например, ревертаза будет копировать какие-либо клеточные РНК. Ревертаза работает неточно, она может вносить ошибки в нуклеотидную последовательность ДНК, образующуюся на РНК, в отличие от ДНК-полимеразы, работающей почти безошибочно при воспроизведении всех хромосом . Если такая ошибочно скопированная последовательность, соответствующая некоторым важным генам, управляющим размножением клеток, попадет в состав провируса и, следовательно, в геном клетки, то это событие может привести к злокачественному перерождению клетки, поскольку клетка теперь будет нести ген, кодирующий измененный белок, отвечающий за рост и размножение клеток. Поэтому ретровирусы, несущие протоонкогены , опасны для клетки и организма.

Структуру провирусов практически повторяют подвижные элементы, получившие название ретротранспозонов. Ретротранспозоны широко распространены у эукариот, населяя геномы дрожжей, растений, насекомых и позвоночных, включая человека. По-видимому у растений они могут занимать значительную часть межгенных пространств. Процесс синтеза ДНК при размножении ретротранспозона с участием ревертазы происходит в вирусоподобных частицах, белковые компоненты которых также кодируются генами ретротранспозона. Однако такие частицы неинфекционны, поскольку большая часть ретротранспозонов в отличие от ретровирусов не содержит гена, который мог бы кодировать белок оболочки вирусной частицы, обеспечивающей ее выход из клетки и способность к заражению других клеток. Правда, резкой границы между ретротранспозонами и ретровирусами провести нельзя. Так, один из ретротранспозонов плодовой мушки дрозофилы (gypsy - цыган) можно назвать как недавно оказалось, настоящим ретровирусом: путем инъекции или скармливанием вирусных частиц удается заразить мух, не несущих ретротранспозона. В то же время этот ретротранспозон в одной определенной линии мух является лишь внутригеномным наследуемым в ряду поколений элементом, локализация нескольких его копий неизменна в одной линии мух, но различается в разных линиях. Подавляющая часть ретротранспозонов либо потеряла ген оболочки, либо еще не приобрела его и, следовательно, представляет собой исключительно внутригеномные, неинфекционные элементы, способные лишь к самовоспроизведению и "подзаражению" того же генома. Остается открытым один из излюбленных дискуссионных вопросов: произошли ли ретровирусы из ретротранспозонов или же, напротив, ретротранспозоны возникли из вирусов в результате потери способности к заражению?

Другой большой класс ретротранспозонов не несет длинных концевых повторов. Механизм внедрения таких ретротранспозонов в ДНК иной, хотя он также осуществляется с помощью обратной транскрипции. К числу таких ретротранспозонов относятся представители так называемого семейства L1, населяющие геном человека. Если репликация ретротранспозонов с ДКП не зависит от точки будущей инсерции, то репликация элемента без длинных концевых повторов непосредственно сопряжена с районом будущего внедрения ретротранспозона. РНК, образовавшаяся при транскрипции ретротранспозона, перемещается к достаточно случайному месту разрыва ДНК-мишени, причем в ряде случаев показано, что она даже сшивается с одной из нитей ДНК. Сюда же устремляются и необходимые для интеграции белки - ревертаза и интеграза. Другая, комплементарная нить ДНК служит затравкой для копирования РНК-копии элемента с участием ревертазы. Сначала ревертаза копирует небольшой участок ДНК-мишени, а затем меняет матрицу и копирует РНК. Затем РНК удаляется и образуется вторая комплементарная нить ДНК.

СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ РОЛЬ РЕТРОТРАНСПОЗОНОВ В ГЕНОМЕ ЭУКАРИОТ

Ретротранспозоны и проблема сохранения концов хромосом в ряду поколений

Для того чтобы лучше разобраться в этой проблеме, желательно прочитать статью О.О. Фаворовой. При воспроизведении ДНК перед клеточным делением синтез ДНК начинается с образования затравки РНК, поскольку фермент ДНК-полимераза способен только добавлять дезоксирибонуклеотидные звенья к 3'-концу полинуклеотидной цепи, но неспособен начинать синтез цепи ДНК. Затравка затем удаляется, и бреши застраиваются. Однако на одном из концов реплицирующихся молекул останется брешь, которую не удается заделать с помощью ДНК-полимеразы, работающей в 5'-3' направлении. Возникает опасность, что одиноко выступающий однонитевый конец ДНК будет уничтожен каким-либо ферментом, в результате чего молекула укоротится с конца. Если не принять соответствующих мер, то при каждом акте репликации ДНК хромосома будет укорачиваться с концов. В конечном итоге могут быть утрачены важные гены и клетка погибнет. Обычно для сохранения конца ДНК (концы хромосом называют теломерами, от греч. телос - конец) используется фермент теломераза, состоящий из двух компонентов: белка и РНК-матрицы, с помощью которой удлиняется конец ДНК. Такое удлинение возможно, потому что концы хромосом содержат повторы из нескольких нуклеотидов (например, у человека ТТАGGG), которым комплементарен участок РНК - компонента теломеразы. Таким образом, теломераза узнает выступающий 3'-конец и удлиняет его. В таком случае удается, снова с использованием ДНК-затравки и РНК-матрицы, достроить конец ДНК. Теломеразная машина устроена таким образом, что конец хромосомы может не только сохраняться, но и удлиняться в ряду поколений. Действительно, последнее нетрудно себе представить, если достраиваемый 3'-конец будет достаточно длинным. Одна из причин старения видится в том, что при отсутствии теломеразы в некоторых тканях происходит укорачивание хромосомы с потерей важных генов. Наоборот, бессмертие ряда клеток в культуре вне организма, свойственное, как правило, клеткам из опухолей, объясняется реактивацией теломеразы. Мы кратко рассмотрели эту интересную проблему, связанную с активностью теломеразы и вечными проблемами биологического старения и опухолевого роста, поскольку оказалось, что иногда в борьбу с укорочением концов хромосом вступают мобильные элементы. У плодовой мушки дрозофилы отсутствует теломеразная машина, но концы ДНК удлиняются за счет перемещений ретротранспозонов. На этом примере впервые показана важная структурная и функциональная роль ретротранспозонов. Они выступают как компоненты генома, спасающие хромосому от укорачивания. В качестве спасателей выступают ретротранспозоны, относящиеся к семействам, без длинных концевых повторов. Ретротранспозоны перемещаются, образуя повторяющуюся структуру, в которой элементы соединены друг с другом по типу "голова к хвосту". Сначала на РНК-транскрипте как на матрице с помощью ревертазы строится комплементарная нить ДНК, а затем после удаления РНК-матрицы достраивается другая. Таким образом, если эти ретротранспозоны и существовали когда-то как элементы-паразиты, то впоследствии геном хозяина приспособил их для выполнения столь важной функции, как сохранение концевых участков хромосом. Эти ретротранспозоны стали уже не эгоистами, а бесценными помощниками, спасающими хромосому от потери генов.

Ретротранспозоны залечивают

двухнитевые разрывы ДНК

Повреждения одной из комплементарных нитей ДНК могут быть устранены за счет удаления этого участка и его ресинтеза с использованием неповрежденной комплементарной нити ДНК. Сложнее залечить двухнитевой разрыв, приводящий к образованию двух отдельных фрагментов двойной спирали ДНК. Хромосомы регулярно расходятся по дочерним клеткам, если они не потеряли центромеры, к которой прикрепляются нити веретена деления, растаскивающие хромосомы. Однако фрагмент хромосомы, лежащий от центромеры дальше, за разрывом, будет утрачен. Обычно двухнитевой разрыв залечивается с помощью гомологичной молекулы ДНК, например сестринской, только что реплицированной нити. Этот процесс, как мы видели, осуществляется путем ресинтеза копии утраченной ДНК на месте образовавшейся дырки. Однако если клетка лишена обычной системы залечивания двухнитевого разрыва, то в качестве заплатки может быть использована подвижная ДНК. Оказалось, что в роли такой подвижной ДНК может выступать реплицирующаяся ДНК ретротранспозонов. В этом случае спасательную функцию осуществляет класс ретротранспозонов, содержащих ДКП. Заплатка позволит хромосоме сохранить целостность и не утратить концевого фрагмента. Правда, брешь в двухнитевой спирали ДНК будет залеплена заплаткой из ретротранспозона, то есть исходная нуклеотидная последовательность не будет восстановлена. Однако если район разрыва не содержал существенного гена, то клетка, а возможно, и организм сохранят жизнеспособность. Возможность участия ретротранспозонов, содержащих длинные концевые повторы, в процессе заживления двухнитевых разрывов была обнаружена в клетках дрожжей недавно, поэтому молекулярные механизмы обнаруженного явления остаются пока невыясненными.

Поврежденные неактивные

подвижные элементы

Чтобы представить себе роль подвижных элементов в изменчивости генома, нельзя не упомянуть о существовании множества неактивных дефектных копий этих элементов. Очень часто отдельные копии транспозонов или ретротранспозонов оказываются дефектными, то есть они не способны кодировать транспозазу или ревертазу. Однако такие элементы сохраняют способность к перемещениям, если в случае транспозонов не повреждены инвертированные повторы, узнаваемые транспозазой, а в случае ретротранспозонов сохранены промотор и возможность транскрипции элемента. Множество таких дефектных копий сохранит способность к перемещениям, если ферменты, ответственные за перемещения (ревертазы и транспозазы) будут кодироваться другими полноценными элементами. В геноме человека источником активной ревертазы является, по-видимому, так называемый ретротранспозон L1, число копий которого достигает 100 тыс. Однако число активных перемещающихся копий составляет всего 30-60 тыс., тогда как остальные настолько повреждены, что не транскрибируются и, следовательно, уже не могут перемещаться. Отметим, что перемещения L1 в геноме человека вызывают мутации генов, и предположения об их возможной благотворной роли пока остаются неподтвержденными. Таким образом, налицо своеобразная двухкомпонентность в семействе подвижных элементов: существуют как полноценные активные элементы, так и дефектные, способные перемещаться только при участии полноценных копий. Наконец, отдельные копии могут быть настолько изменены, что утратят всякую способность к перемещению из-за того, что концевые повторы будут безнадежно испорчены: станет невозможной как транскрипция, так и узнавание транспозазами.


http://www.pereplet.ru/obrazovanie/stsoros/601.html


Вернуться к началу
 Профиль  
Ответить с цитатой  
 Заголовок сообщения:
СообщениеДобавлено: Вс май 02, 2010 11:01 am 
Не в сети
Новичок
Новичок

Зарегистрирован: Сб май 01, 2010 6:21 pm
Сообщения: 16
И маленькая короткая ремарка как дополнение. :D


Цитата:
Например, под действием рентгеновских лучей ДНК хромосом может разорваться. Хромосомы в таком случае тоже разрываются. При этом могут возникнуть хромосомы без центромерного района. Такие хромосомы лишены способности двигаться в прометафазе и анафазе.

Некоторые химические соединения, не свойственные живым оргазмам (спирты, эфиры), нарушают согласованность митотических процессов. Одни хромосомы начинают двигаться быстрее, другие отстают. Отставшие хромосомы могут не включиться в формирующиеся дочерние ядра.

Иногда в делящейся клетке образуется не два, а три или четыре полюса, что ведет к возникновению соответственно трех или четырех дочерних клеток. При таком делении нарушается весь слаженный механизм распределения хромосом. Метафазная хромосома, состоящая из двух сестринских хроматид, может взаимодействовать одновременно только с двумя полюсами. Если полюсов больше, то каждая хромосома вынуждена «выбирать», с какими двумя полюсами из трех или четырех ей взаимодействовать. Этот выбор совершается случайно. В результате каждая дочерняя клетка получает не весь набор хромосом, а только его часть. Клетки, получившие неполный набор хромосом, как правило, оказываются нежизнеспособными и погибают.



http://mylearn.ru/kurs/43/2166


Вернуться к началу
 Профиль  
Ответить с цитатой  
 Заголовок сообщения:
СообщениеДобавлено: Пн авг 16, 2010 9:50 pm 
Не в сети
Новичок
Новичок

Зарегистрирован: Пт авг 13, 2010 4:49 am
Сообщения: 8
спасибо!


Вернуться к началу
 Профиль  
Ответить с цитатой  
 Заголовок сообщения:
СообщениеДобавлено: Чт дек 16, 2010 2:32 pm 
Не в сети
Новичок
Новичок

Зарегистрирован: Сб июн 19, 2010 11:16 am
Сообщения: 8
Откуда: Россия
Объясните мне следующее: ведь невозможна такая регенерация, как у Россомахе в фильме Люди-Икс. Хотя морская звезда имеет способность к отрастанию конечностей, росту до целого организма из конечности.
Это тогда как у него ДНК делется и при это успевает пройти все фазы деления клетки.

_________________
Arrqgoehnm


Вернуться к началу
 Профиль  
Ответить с цитатой  
 Заголовок сообщения:
СообщениеДобавлено: Чт дек 16, 2010 3:01 pm 
Не в сети
Новичок
Новичок

Зарегистрирован: Сб июн 19, 2010 11:16 am
Сообщения: 8
Откуда: Россия
Объясните мне следующее: ведь невозможна такая регенерация, как у Россомахе в фильме Люди-Икс. Хотя морская звезда имеет способность к отрастанию конечностей, росту до целого организма из конечности.
Это тогда как у него ДНК делется и при это успевает пройти все фазы деления клетки.

_________________
Arrqgoehnm


Вернуться к началу
 Профиль  
Ответить с цитатой  
 Заголовок сообщения:
СообщениеДобавлено: Чт сен 08, 2011 8:17 pm 
Не в сети
Новичок
Новичок

Зарегистрирован: Чт сен 08, 2011 8:05 pm
Сообщения: 8
Всё возможно. И сегодня ночью она придёт за тобой. Дождётся когда уснёшь и придёт. :evil:


Вернуться к началу
 Профиль  
Ответить с цитатой  
 Заголовок сообщения:
СообщениеДобавлено: Чт сен 29, 2011 10:39 am 
Не в сети
Новичок
Новичок

Зарегистрирован: Чт сен 29, 2011 10:23 am
Сообщения: 1
может, у человека и есть такой механизм регенерации, но он в заторможенном состоянии? Если нечаянно отрезать кусочек пальца, то этот кусочек может восстановиться даже с рисунком отпечатка, может, когда-то медицина научится пробуждать механизм регенерации?


Вернуться к началу
 Профиль  
Ответить с цитатой  
 Заголовок сообщения: Re: Как происходят мутации
СообщениеДобавлено: Пт сен 04, 2015 9:14 am 
Не в сети
Участник
Участник
Аватара пользователя

Зарегистрирован: Пт сен 04, 2015 9:01 am
Сообщения: 45
Круто расписали про черепашек-нинзя) :Yahoo!:

_________________
Главное, чтобы поменьше пить и поменьше думать похмелье что делать :Yahoo!:


Вернуться к началу
 Профиль  
Ответить с цитатой  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Часовой пояс: UTC + 4 часа


Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  
cron